Service

Rexroth Inline terminal with one analog output

R911170602 Edition 01

R-IB IL AO 1/SF-PAC

1 analog output 2-wire technology 0 - 20 mA, 4 - 20 mA 0 - 10 V

Description

The terminal is designed for use within an Inline station. It is used to output analog voltage or current signals. The signals are available with a resolution of 16 bits.

Features

- One analog signal output for the connection of either voltage or current signals
- Actuator connection in 2-wire technology with shield connection
- Two current ranges, one voltage range: 0 mA to 20 mA, 4 mA to 20 mA, 0 V to 10 V
- Process data update including conversion time of the digital/analog converter <1 ms

Only **one** output may be used on the terminal! Use a connector with shield connection when installing the actuator.

04/2008

This data sheet is only valid in association with the application description for the Rexroth Inline system (see "Documentation" on page 2).

Make sure you always use the latest R documentation. It can be downloaded at www.boschrexroth.com.

"Automation Terminals of the Inline Product Range"

R911317021 1

Ordering data

Description	Туре	Order No.	Pcs./Pkt.	
Rexroth Inline terminal with one analog output for either voltage or current signals; complete with accessories (connectors and labeling fields) Documentation	R-IB IL AO 1/SF-PAC	R911170787	1	
Description	Туре	Order No.	Pcs./Pkt.	
"Configuring and Installing the INTERBUS Inline Product	DOK-CONTRL-	R911317023	1	

DOK-CONTRL-^ ILSYSINS***-AW..-EN-P

T.SP	For additional ordering data (accessories), please refer to the product catalog at
N 3	www.boschrexroth.com.

Technical data

application description

General data

Housing dimensions (width x height x depth)	24.4 mm x 136 mm x 72 mm (with connector)
Weight	100 g (with connector)
Operating mode	Process data mode with 1 word
Connection method for actuators	2-wire technology
Ambient temperature (operation)	-25°C to +55°C
Ambient temperature (storage/transport)	-25°C to +85°C
Permissible humidity (operation/storage/transport)	10% to 95%, according to DIN EN 61131-2
Permissible air pressure (operation/storage/transport)	70 kPa to 106 kPa (up to 3000 m above sea level)
Degree of protection	IP20 according to IEC 60529
Class of protection	Class III, IEC 61140
Connection data for Inline connector	
Connection method	Spring-cage terminals
Conductor cross-section	0.2 mm ² to 1.5 mm ² (solid or stranded), 24 - 16 AWG
The following technical data differs from the IB IL SYS F	PRO UM E user manual:
Mechanical requirements	
Shock test according to EN 60068-2-27; IEC 60068-2-27	15g load for 11 ms, half sinusoidal wave, three shocks in each direction and orientation 25g load for 6 ms, half sinusoidal wave, three shocks in each direction and orientation
Interface	
Local bus	Through data routing
Transmission speed	
R-IB IL AO 1/SF-PAC	500 kbps
Power consumption	
Communications power UL	7.5 V
Current consumption from UL	30 mA, typical; 40 mA, maximum
I/O supply voltage U _{ANA}	24 V DC
Current consumption at U _{ANA}	50 mA, typical; 65 mA, maximum
Total power consumption	1.425 W, typical
Supply of the module electronics and I/O through the bu	us coupler/power terminal
Connection method	Potential routing

T_A [°C]

Number

I [A]

Derating: Permissible ambient temperature depending on the current of the potential jumpers U_M and U_S (total current)

Signals/resolution in the p	rocess data word (quantization)							
Voltage 0 to 10 V		0 to 9.99985 V	0.153 mV/LSB					
Current	0 to 20 mA	0 to 19.9997 mA	0.305 μA/LSB					
	4 to 20 mA	4 to 19.99976 mA	0.244 µA/LSB					
Measured value representation		16-bit, straight binary						
Basic error limit in the current range		±0.05%, typical						
Output load								
Voltage output		2 kΩ, minimum						
Current output		500 Ω, maximum						
Process data update including conversion time of the digital/analog converter		1 bus cycle (depending on the bus configuration); <1 ms						
Slew rate (>99% of the fin	al value)	<10 µs						

Tolerance behavior and temperature response of the voltage output (The tolerance values refer to the output range final value of 10 V.)		
	Typical	Maximum
Tolerance at 23°C		
Total offset voltage	±0.03%	±0.05%
Tolerance due to gain	±0.10%	±0.15%
Differential non-linearity	±0.0012%	±0.003%
Total tolerance at 23°C	±0.15%	±0.25%
Temperature response at -25°C to +55°C		
Offset voltage drift T _{KVO}	±10 ppm/K	±65 ppm/K
Gain drift T _{KG}	±30 ppm/K	±35 ppm/K
Total voltage drift T _{Ktot} = T _{KVO} + T _{KG}	±40 ppm/K	±100 ppm/K
Total tolerance of the voltage outputs (-25°C to +55°C) Tolerance due to offset, gain, linearity, and drift	±0.30%	±0.60%
Tolerance behavior and temperature response of the current output (0 mA to (The tolerance values refer to the output range final value of 20 mA.)	o +20 mA)	
	Typical	Maximum
Tolerance due to offset at 23°C		
Offset current I _{oc}	±0.05%	±0.15%
Tolerance due to gain	±0.09%	±0.25%
Differential non-linearity	±0.0012%	±0.003%
Total tolerance at 23°C	±0.15%	±0.25%
Temperature response at -25°C to +55°C		
Offset current drift T _{KIO}	±25 ppm/K	±65 ppm/K
Gain drift T _{KG}	±10 ppm/K	±35 ppm/K
Total current drift TKtot = TKIO + TKG	±35 ppm/K	±100 ppm/K
Tolerance behavior and temperature response of the current output (4 mA to (The tolerance values refer to the output range final value of 20 mA.)	o +20 mA)	
	Typical	Maximum
Tolerance due to offset at 23°C		
Offset current I _{oc}	±0.15%	±0.45%
Tolerance due to gain	±0.25%	±0.45%
Differential non-linearity	±0.003%	±0.005%
Total tolerance at 23°C	±0.25%	±0.46%
Temperature response at -25°C to +55°C		
Offset current drift T _{KIO}	±28 ppm/K	±70 ppm/K
Gain drift T _{KG}	±15 ppm/K	±40 ppm/K
Total current drift TKtot = TKIO + TKG	±43 ppm/K	±110 ppm/K

13

The specified data refers to operation under nominal conditions on a R-IBS IL 24 BK-T/U bus coupler in the recommended mounting position.

Additional tolerances influenced by electromagnetic fields								
Type of electromagnetic interference	Criterion	Typical relative deviation of the measuring range final value						
Electromagnetic fields Field strength 10 V/m According to EN 61000-4-3/IEC 61000-4-3	A	<1%						
Fast transients (burst) 2 kV supply, 1 kV output According to EN 61000-4-4/IEC 61000-4-4	В	<1%						
Conducted interference Class 3 (test voltage 10 V) According to EN 61000-4-6/IEC 61000-4-6	A	<6%						
Safety equipment								
None								
Electrical isolation/isolation of the voltage areas								
The electrical isolation of the logic level	el from the I/O	area is ensured by the DC/DC converter.						
Common potentials								
24 V I/O voltage, 24 V segment voltage, and GND have th	e same potentia	al. FE is a separate potential area.						
Separate potentials in the system consisting of bus co	oupler/power te	erminal and I/O terminal						
- Test distance		- Test voltage						
7.5 V supply (bus logic), 24 V supply U _{ANA} / I/O		500 V AC, 50 Hz, 1 min.						
7.5 V supply (bus logic), 24 V supply U_{ANA} / functional ear	th ground	500 V AC, 50 Hz, 1 min.						
24 V supply (I/O) / functional earth ground		500 V AC, 50 Hz, 1 min.						
Error messages to the higher-level control or compute	er system							
Failure of or insufficient communications power U_L	Yes, I/O error	r message sent to the bus coupler						
Approvals								

For the latest approvals, please visit <u>www.boschrexroth.com</u>.

Local diagnostic and status indicators and terminal point assignment

Fig. 1 Terminal with appropriate connectors

Local diagnostic and status indicators

Des.	Color	Meaning
D	Green	Diagnostics
UB	Green	I/O voltage for analog terminals present (current level)

Function identification

Yellow

Terminal point assignment

Connector	Terminal point	Signal	Assignment
1	1.1	U	Voltage output 0 V to 10 V
	2.1	-	Not used
2 1.1		I	Current output 0 mA to 20 mA
	2.1	1	Current output 4 mA to 20 mA
1 1.2, 2.2 –		-	Not used
and	1.3, 2.3	GND	Ground
2	1.4, 2.4	Shield	Shield connection

Installation instructions

High current flowing through potential jumpers U_M and U_S leads to a temperature rise in the potential jumpers and inside the terminal. Observe the following instructions to keep the current flowing through the potential jumpers of the analog terminals as low as possible:

Create a separate main circuit for all analog terminals!

If this is not possible in your application and you are using analog terminals in a main circuit together with other terminals, place the analog terminals behind all the other terminals at the end of the main circuit.

Please note the derating curve shown on page 3.

Internal circuit diagram

Electrical isolation

Fig. 3 Electrical isolation of the individual function areas

Connection notes

Always connect the analog actuator using shielded, twisted pair cables.

At the terminal, connect one end of the shielding to PE. At the module, fold the outer cable sheath back and connect the shield to the terminal via the shield connection clamp. The clamp connects the shield directly to FE on the module side.

When using cables longer than 10 m in environments prone to interference, we recommend additionally connecting the shield on the actuator to the FE potential via an RC element. The capacitor C should typically have values of 1 nF to 15 nF. The resistor R should have a resistance of at least 10 M Ω .

R R	Use an I/O connector with shield con- nection when installing the actuator. Insert the connector without shield connection into the unused base side. The appearance of the module differs depending on the output used. This is shown in Fig. 4 and Fig. 5 in the top
	shown in Fig. 4 and Fig. 5 in the top left corner.

Connection examples

R

Use a connector with shield connection when installing the actuator. Fig. 4 and Fig. 5 show the connection schematically (without shield connector).

Voltage output

5562B004

Fig. 4 Actuator connected to the voltage output 0 V to 10 V in 2-wire technology with shield connection **Current output**

Fig. 5 Actuator connected to the current outputs in 2-wire technology with shield connection

- A Signals for actuator at the current output 0 mA to 20 mA
- B Signals for actuator at the current output 4 mA to 20 mA

Programming data/configuration data

Local bus

ID code	7D _{hex} (125 _{dec})
Length code	01 _{hex}
Input address area	0 byte
Output address area	1 word
Parameter channel (PCP)	0 byte
Register length (bus)	1 word

Other bus systems

For the programming data/configuration data of other bus systems, please refer to the corresponding electronic device data sheet (e.g., GSD, EDS).

Process data

Assignment of the terminal points to the process data output word

(Word.bit) view	Word	Process data output word x															
	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Terminal points	Terminal points Signal Terminal point 1.1: voltage output																
Slot 1	Signal reference	Terminal point 1.3, 2.3															
	Shielding (FE)	Terminal point 1.4, 2.4															
Terminal points Slot 2	Signal	Terminal point 1.1: current output 0 to 20 mA Terminal point 2.1: Current output 4 to 20 mA															
	Signal reference	Terminal point 1.3, 2.3															
Shielding (FE) Terminal point 1.4, 2.4																	

Process data output word

The process data output word specifies the output value in each cycle.

55620006

- Fig. 6 Process data output word
- AV Analog value
- MSB Most significant bit
- LSB Least significant bit

All output values are represented in 16 bits.

For significant values in the process data word, refer to the following tables.

Abbreviations used in the following tables:

QS	Quantization step(s)	ORF	Output range final value
MSB	Most significant bit	LSB	Least significant bit

Process data output word for the voltage output 0 V to 10 V (example)																		
Voltage output Analog value (V) Process data output word																		
0 V to 10 V Hex Binary (two's complement)																		
		MSB							LSB									
			15	14	13	12	11	10	9	8	7	6	5	4	З	2	1	0
10 V minus 1 QS	9.99985	FFFF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10 V minus 2 QS	9.99969	FFFE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Half ORF	5.0000	8000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 QS	0.153 mV	0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																
Zero	0.0000	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Process data output word for the current output 0 mA to 20 mA (example)																		
Current output	Analog value	Process data output word																
0 mA to 20 mA	(mA)	Hex Binary (two's complement) MSB LS																
										LS	ЗB							
			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
20 mA minus 1 QS	19.9997	FFFF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20 mA minus 2 QS	19.9994	FFFE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Half ORF	10.000	8000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 QS	0.305 µA	0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																
Zero	0.0000	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Process data output word for the current output 4 mA to 20 mA (example)																		
Current output	Analog value	value Process data output word																
4 mA to 20 mA	(mA)	A) Hex Binary (two's complement)																
MSB														LS	В			
			15	14	13	12	11	10	9	8	7	6	5	4	З	2	1	0
20 mA minus 1 QS	19.99998	FFFF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20 mA minus 2 QS	19.99995	FFFE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Half ORF	12.0000	8000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 mA plus 1 QS	4,000244	0001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Output range start	4.0000	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Output behavior of the voltage or current output

R

When configuring your system, take into account output behavior in the event of an error.

Switching opera-	Marginal	OUT process	Behavi	or/status of the analo	g output
tion/status of the supply voltage	condition	data word (hex)	0 V to 10 V	0 mA to 20 mA	4 mA to 20 mA
U _{ANA} from 0 V to 24 V	U _L = 0 V	XXXX	0 V	0 mA	4 mA
U _{ANA} from 24 V to 0 V	U _L = 7.5 V	хххх	0 V	0 mA	0 mA
Bus in STOP state	$U_{ANA} = 0 V$	XXXX	0 V	0 mA	0 mA
Bus in STOP state	U _{ANA} = 24 V	XXXX		Retain last value	

U_{ANA} Analog supply voltage of the terminal

U_L Supply voltage for module electronics (communications power)

xxxx Any value in the range from 0000_{hex} to $FFFF_{hex}$.

The output behavior and status depend upon which output is used.

Response of the control system or computer to a hardware signal for different control or computer systems

Signal	Control or	Status after switching operation										
	computer system	Process data output word	Analog	output								
		OUT	U _{out}	l _{out}								
NORM*	AEG Schneider Automation	0000	0 V	0 mA/4 mA								
BASP	Siemens S5	0000	0 V	0 mA/4 mA								
CLAB	Bosch	0000	0 V	0 mA/4 mA								
SYSFAIL	VME	0000	0 V	0 mA/4 mA								
SYSFAIL	PC	0000	0 V	0 mA/4 mA								
CLEAR OUT	Moeller IPC	0000	0 V	0 mA/4 mA								

*The controller boards for AEG Schneider Automation control systems allow the setting of the NORM signal in such a way that enables the process data output word OUT and the analog output to retain the last value.

R

The status of the current output depends upon which range is selected.

Response of the voltage and current output to a control command of the controller board

Command	Status after switching operation									
	Process data output word	Analog	output							
	OUT	U _{out}	I _{out}							
STOP	Retain last value	Retain last value	Retain last value							
ALARM STOP (reset)	Retain last value	Retain last value	Retain last value							

DOK-CONTRL-ILAO1/SF***-KB01-EN-P Bosch Rexroth AG Electric Drives and Controls P.O.Box 13 57 97803 Lohr, Germany Bgm.-Dr.-Nebel-Str. 2 97816 Lohr, Germany Tel. +49-(0) 93 52 - 40-50 60 Fax. +49-(0) 93 52 - 40-49 41 service.svc@boschrexroth.de www.boschrexroth.com All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorization of Bosch Rexroth AG, Electric Drives and Controls. Violations shall give rise to claims for damages. The data specified above only serve to describe the product. They do not indicate any specific condition or suitability for a certain application. The information provided does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to natural wear and aging.

Reprint forbidden - subject to modifications